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Abstract
SLIM is a spacecraft that will be deployed by JAXA to land on and study the moon. The

use of its novel image processing technique will provide it greater freedom for landing, but in
return it will require the spacecraft to coast while landing, which means that it will follow a
trajectory without using any control maneuvers. This study attempts to analyze the effects
of coasting on SLIM’s optimal trajectory. Using GPOPS-II, an optimization program that
employs the pseudospectral method, we were able to produce a full, optimal trajectory that
includes one coasting phase, and some success with a trajectory with two coasting phases. We
found that with more coasting, the final downrange, peak radius, and fuel consumption all
increased. In the future, we hope to expand on this research by making it possible to obtain
trajectories with multiple coasting phases.
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1 Introduction

Outer space is a hostile environment for explor-
ers. Resources are extremely limited, and com-
munication with Earth becomes difficult as one
explores further out. Nevertheless, humanity
has chosen to venture out into space to become
a little closer to our universe. To make this pos-
sible, it is necessary to study the orbits and ma-
neuvers that allow spacecrafts to transfer from
point A to point B with the limited resources it
has.

SLIM (Smart Lander for Investigating Moon)
is a spacecraft developed by JAXA that will
demonstrate a novel technique for landing on
the moon [1]. SLIM will utilize an onboard cam-
era to process images of the moon surface before
landing in order to find safe areas to land on.
However, there is one limitation to this: SLIM
must turn off its main thrusters in order for it
to observe the lunar surface. With SLIM mov-
ing through space without using any control ma-
neuvers, which we will refer to as coasting, the
trajectory it takes will significantly differ from
the optimal one. Coasting has not been utilized
often in past spacecraft, and its effects are still
relatively uncertain when added to an optimal
trajectory.

1.1 Goal Statement

This study explores whether it is possible to ob-
tain a reasonable, optimal trajectory (minimum
fuel consumption) that explicitly includes coast-
ing, and analyzes how these trajectories com-
pare to the trajectory that does not explicitly in-
clude coasting as a constraint. "Coasting" in this
paper refers to a spacecraft following a trajec-
tory without using any fuel whatsoever, allowing
the craft to freely move through space without
control. The coasting phase(s) will start and
end as a function of time.

The study will base its research on Takehiro
Higuchi’s previous study on coasting [2], and
will attempt to replicate and expand upon it
by creating a full trajectory optimization of the
spacecraft. rather than just a small portion of
it. This will lead to a fuller understanding of the
effects of coasting on a spacecraft, and how the
trajectories may need to be modified depending
on the coasting constraints.

2 Methods
Optimization is performed through a direct method
called the pseudospectral method on two sepa-
rate optimization computer programs: IPOPT
and GPOPS-II.

2.1 The Pseudospectral Method
The pseudospectral method turns an optimal
control problem into a non-linear program by
discretizing the equations that define the prob-
lem. The state and control variables are ap-
proximated as functions of time by construct-
ing them with Lagrange polynomials at the dis-
cretized points

x(t) ≈ xN (t) =
N∑
l=0

x(tl)φl(t) (1)

u(t) ≈ uN (t) =
N∑
l=0

u(tl)φl(t) (2)

N is the order of the polynomial used to
approximate the function, tl is the discretized
time, with l = 0, 1, . . . , N , and φl(t) is an or-
thogonal, Lagrange polynomial (such as the Leg-
endre or Chebyshev polynomial) of order l with
the following property.

φl(tk) =
{

1 l = k

0 l 6= k
(3)

This study used the Legendre polynomial for all
optimizations. The Legendre polynomial is de-
scribed by the differential equation in 4 and the
Lagrange polynomial is constructed from it, de-
scribed in equation 5.

d

dt

[
(1− t2) d

dt
LN (t)

]
+N(N+1)LN (t) = 0 (4)

φl(t) = 1
N(N + 1)LN (t)

(t2 − 1)L̇N (t)
t− tl

(5)

Furthermore, the pseudospectral method trans-
forms the independent variable used (in most
cases time) such that it lies in the domain [−1, 1]
(equation 6), and discretizes the problem at spe-
cial collocation points defined by the orthogonal
polynomial used. This study employed Legendre-
Gauss-Lobatto points and the Legendre-Gauss-
Radau points.

τ = 2 t− t0
tf − t0

− 1 (6)
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Figure 1: The discretization of time at the
Legendre-Gauss-Lobatto points of several orders
of magnitude.

LGR: LN (τl) + LN−1(τl) = 0
LGL: L̇N−1 = 0

τ0 = −1
τN = 1

After discretizing the state and control vari-
ables, constraints are applied to the equalities
and inequalities to solve the optimization.

2.2 Problem Setup and Model
A spacecraft, treated as a point mass, is modeled
in two dimensions with a thruster that can be
pointed in any direction. There are six state
variables and two control variables.

x =


r
θ
m
vr
vθ
β

 u =
[
u

β̇

]

β may have been considered a control variable,
but by bounding the derivative of β instead,
it became possible to obtain a much smoother
output for β. Furthermore, unlike the thruster
strength which can be modeled fairly accurately
with discontinuities, β must be continuous in or-
der to be realistic.

Very broadly speaking, the maneuver was
separated into a transfer phase and a landing
phase. The initial and final conditions for the

transfer phase are listed in table 1, and for the
landing phase in table 2.

The dynamics and constraints were were mod-
eled after Park’s paper [3]. A rotating frame
was used as the frame of reference such that
the frame rotated at the same rate as the moon
(which we will refer to as ωm. Although a few
constraints varied from simulation to simulation,
most of them stayed constant and are the follow-
ing.

The state equations:

ṙ = vr (7)

θ̇ = vθ
r

(8)

ṁ = − u

Ispg
(9)

v̇r = −GM
r2 + u sin(β)

m
+ v2

θ

r
+ 2ωmvθ + rω2

m

(10)

v̇θ = u cos(β)
m

− vθvr
r
− 2ωmvr (11)

β̇ = β̇ (ẋ(6) = u(2)) (12)

Maximum and minimum values:

0 ≤ t ≤ 2π
√

a3
0

GM

Rm + 3 ≤ r ≤ 2(Rm + 15)
0 ≤ θ ≤ 2π

10 ≤ m ≤ 302.4

−
√

2GM
Rm

≤ vr ≤
√

2GM
Rm

−1.69204 ≤ vθ ≤ 2(1.69204)
−6π ≤ β ≤ 6π

0 ≤ u ≤ umax
−0.1 ≤ β̇ ≤ 0.1

The radius of the moon is set toRm = 1738.4km,
the specific impulse is set to Isp = 320, and
the maximum thrust is modeled as a function of
mass as umax = (6.7972×10−4m2 +0.15946m+
324.756)/1000 [2].

2.3 Multi-phase optimization
As the problem required internal point constraints,
the transfer phase was split into several sub-
phases to specify different constraints. Higuchi’s
simulations include only two different kinds of
phases: a coasting phase and maximum thrust
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Figure 2: A model of the spacecraft relative to the moon.

Figure 3: A model of the spacecraft and its state and control variables
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Figure 4: The trajectory of the spacecraft with
no coasting. The portion covered by the square
is the pre-descent subphase.

phase. Therefore, his simulations with one coast-
ing phase were split as thrust-coast-thrust, and
his simulations with two coasting phases were
split as thrust-coast-thrust-coast-thrust. A re-
construction of his results can be seen in figure 5.
This is because his simulations only included the
portion of the transfer phase where the space-
craft was preparing to enter its landing phase,
which we show in figure 4. We will refer to this
subphase as the pre-descent subphase.

When performing our own optimizations over
the whole trajectory, it was found that Higuchi’s
use of maximum thrust for his simulations were
a fair assumption. The thrust profile over time

Variable Symbol Initial Final

Radius r [km] Rm + 15 Rm + 3

Angle θ [rad] 0 FREE

Mass m [kg] 302.4 FREE
Radial
Velocity vr [km/s] 0 −0.04

Azimuthal
Velocity vθ [km/s] 1.69204 0
Thruster
Direction β [rad] π π/2

Table 1: The Initial and Final Conditions of the
transfer phase

Figure 5: A reconstruction of Higuchi’s simula-
tions. The red portion is where the spacecraft
is using its thrusters at maximum, and black is
where it coasts. This graph shows a no coasting
trajectory and a one coast trajectory.

followed a max-zero-max pattern. The first max
slowed the spacecraft down such that the space-
craft slowly approached the moon over time. Af-
ter a long period of coasting (which is part of
the optimal trajectory), the spacecraft blew its
thrusters again at maximum force, creating a
huge arc with its trajectory and finally reaching
the terminal values of the transfer phase.

Assuming this thrust pattern to hold for all
optimal trajectories, we split the transfer phase
into four subphases for one coasting phase: vari-
able thrust - max thrust - coast - max thrust.
This will allow the optimization software to find
the optimal trajectory with the coasting forced
inside the pre-descent subphase, which will now
consist of the max thrust - coast - max thrust
subphases. To prove that this setup will still
produce a similar optimal trajectory, we opti-

Variable Initial Final
r [km] Rm + 3 Rm + 0.003
θ [rad] θ0 = FREE θf = θ0
m [kg] FREE FREE
vr [km/s] −0.04 0
vθ [km/s] 0 0
β [rad] π/2 π/2

Table 2: The Initial and Final Conditions of the
landing phase
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Figure 6: The altitude vs downrange graph for
the optimal, one coasting trajectory.

Figure 7: The θ vs t graph for the optimal, one
coasting trajectory.

mized the trajectory with a variable thrust - max
thrust subphase pattern (no coasting). The fi-
nal trajectory was nearly indistinguishable from
the trajectory with no subphases (just variable
thrust throughout the transfer phase).

3 Results

Optimization was initially performed on IPOPT,
but performance was poor when attempting to
optimize on a multi-phase problem. Therefore,
all successful optimizations with multiple phases
was performed on GPOPS-II.

Figure 8: The control maneuvers for the opti-
mal, one coasting trajectory.

3.1 One coasting phase

Reflecting Higuchi’s simulation, we included a
coasting phase of 50 seconds in the pre-descent
subphase. In order to keep it right in the mid-
dle of the subphase, we added a time constraint
for the two max thrust subphases that sandwich
the coast subphase such that their lengths are
within 20 seconds of each other. In other words,
we added a soft constraint such that the length
of time they each take are equivalent. By doing
this, we force the coasting subphase to be right
in the middle of the pre-descent subphase.

Generally speaking, when coasting was in-
cluded in the optimization, the final landing θ
became larger, and the peak radius increased.
Furthermore, the amount of fuel consumed in-
creased slightly. Several simulations were ran
with different lengths of time for coasting, and
the final θ, peak radius, and fuel consumed all
increased with time. This effect can be explained
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by the following. As the spacecraft coasts, it
needs additional height and velocity to float above
the ground before it can begin using its thrusters
again, causing the increased final θ and peak
radius. Furthermore, the additional fuel con-
sumed is expected since the trajectory is stray-
ing away from the optimal one.

3.2 Two coasting phases

Coasting twice was also attempted, with mixed
results. This simulation included six subphases,
and had the following pattern: variable thrust -
max thrust - coast - max thrust - coast - max
thrust. Both coasting phases are 50 seconds
long. The first has the same constraints as the
one coasting trajectory, where the subphases that
sandwich it are about the same length of time.
The second coasting phase also mirrors Higuchi’s
simulation such that the coasting is included
at some point in the last 125 seconds of the
transfer phase(this was later changed to having
the coasting beginning 75-175 seconds before the
end of the transfer phase, in order to make the
problem more feasible).

The optimization process became increasingly
difficult with the introduction of the additional
coasting phase, due to the mesh error not meet-
ing within the tolerance values. This may be due
to the new combination of constraints made by
adding the phases for a second coasting. It is
possible that the lack of a final constraint for
θ will allow for multiple solutions. Evidence
for this was seen when one set of initial con-
ditions and constraints caused the spacecraft to
land almost immediately, while another caused
it to land on the other side of the moon (figure
9). When multiple solutions are locally optimal,
the algorithm may have trouble converging to a
single solution. Furthermore, adding the second
coasting phase will only make the problem closer
to one that is infeasible. This is especially true
as the coasting approaches the end of the trans-
fer phase, since there will be less control for the
trajectory to meet the terminal conditions. Al-
though an optimal solution is found even with
two coasting phases, the solution tends to be
very noisy, and we cannot conclude that it is a
reasonable control maneuver (figure 10) . Re-
gardless, as expected, the trajectories followed
the same pattern as before: more coasting leads
to more fuel consumption and a slower landing.

Figure 9: An example of the problem having
multiple optimal solutions. The red, shorter tra-
jectory uses a tf initial guess of 0.2, while the
blue, longer one uses an initial guess of 0.5.
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Figure 10: The noisy solution of the two coast
trajectory. Although there is noise, it is still
possible to make out the intended solution.

4 Conclusion
Optimization of spacecraft trajectories is an im-
portant process in extraterrestrial missions. When
a spacecraft like SLIM needs to stray from its
optimal trajectory, it is important to analyze
how its new trajectory will affect the outcome
of its mission. This study attempted to analyze
the effects of coasting in the pre-descent sub-
phase of the optimal trajectory for landing on
the moon. We attempted to reproduce Takehiro
Higuchi’s work with SLIM, and expand upon it
by creating a more full simulation of the space-
craft trajectory. By setting the appropriate ini-
tial and final conditions, and splitting the trajec-
tory into multiple phases, trajectory optimiza-
tion was performed via the pseudospectral method.
We successfully reproduced Higuchi’s work us-
ing GPOPS-II, and the full optimal trajectory
for one coasting phase. However, the optimiza-
tion became significantly difficult with two coast-
ing phases. We can expect that with each addi-
tional coasting phase we include, the trajectory
optimization will become more and more diffi-
cult. However, all simulations followed the gen-
eral pattern that more coasting leads to an over-
all longer, final downrange for landing, a higher
peak radius, and higher fuel consumption.

Future work may include further refinement
of the problem to obtain reasonable results for
a trajectory with more than one coasting phase.
It is important to identify the underlying prob-
lem that is keeping the solution from converging
well. In addition, being able to perform the opti-
mization on IPOPT will introduce a new degree
of freedom, and may be worth pursuing. Finally,
it may be worthwhile to attempt to translate the
results into an actual control algorithm for the
lunar spacecraft.
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